Single electrons on solid neon as a solid-state qubit platform

  • Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Popkin, G. Quest for qubits. Science 354, 1090–1093 (2016).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • de Leon, N. P. et al. Materials challenges and opportunities for quantum computing hardware. Science 372, 253 (2021).

    Google Scholar 

  • Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    ADS 
    CAS 

    Google Scholar 

  • Zwanenburg, F. A. et al. Silicon quantum electronics. Rev. Mod. Phys. 85, 961–1019 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Cole, M. W. & Cohen, M. H. Image-potential-induced surface bands in insulators. Phys. Rev. Lett. 23, 1238 (1969).

    ADS 
    CAS 

    Google Scholar 

  • Cole, M. W. Electronic surface states of a dielectric film on a metal substrate. Phys. Rev. B 3, 4418 (1971).

    ADS 

    Google Scholar 

  • Leiderer, P. Electrons at the surface of quantum systems. J. Low Temp. Phys. 87, 247–278 (1992).

    ADS 
    CAS 

    Google Scholar 

  • Platzman, P. & Dykman, M. I. Quantum computing with electrons on liquid helium. Science 284, 1967–1969 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Smolyaninov, I. I. Electrons on solid hydrogen and solid neon surfaces. Int. J. Mod. Phys. B 15, 2075–2106 (2001).

    ADS 
    CAS 

    Google Scholar 

  • Dykman, M. I., Platzman, P. M. & Seddighrad, P. Qubits with electrons on liquid helium. Phys. Rev. B 67, 155402 (2003).

    ADS 

    Google Scholar 

  • Lyon, S. A. Spin-based quantum computing using electrons on liquid helium. Phys. Rev. A 74, 052338 (2006).

    ADS 

    Google Scholar 

  • Bradbury, F. R. et al. Efficient clocked electron transfer on superuid helium. Phys. Rev. Lett. 107, 266803 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Blais, A., Grimsmo, A. L. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Schuster, D. I., Fragner, A., Dykman, M. I., Lyon, S. A. & Schoelkopf, R. J. Proposal for manipulating and detecting spin and orbital states of trapped electrons on helium using cavity quantum electrodynamics. Phys. Rev. Lett. 105, 040503 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, G. et al. Coupling an ensemble of electrons on superfluid helium to a superconducting circuit. Phys. Rev. X 6, 011031 (2016).

    Google Scholar 

  • Koolstra, G., Yang, G. & Schuster, D. I. Coupling a single electron on superfluid helium to a superconducting resonator. Nat. Commun. 10, 5323 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, D. Quantum electronics and optics at the interface of solid neon and superfluid helium. Quantum Sci. Technol. 5, 035003 (2020).

    ADS 

    Google Scholar 

  • Clerk, A. A., Lehnert, K. W., Bertet, P., Petta, J. R. & Nakamura, Y. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16, 257–267 (2020).

    CAS 

    Google Scholar 

  • Chatterjee, A. et al. Semiconductor qubits in practice. Nat. Rev. Phys. 3, 157–177 (2021).

    Google Scholar 

  • Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-cooper-pair box. Nature 398, 786–788 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664–669 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kawakami, E. et al. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotechnol. 9, 666–670 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mi, X. et al. A coherent spin-photon interface in silicon. Nature 555, 599–603 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Samkharadze, N. et al. Strong spin-photon coupling in silicon. Science 359, 1123–1127 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Landig, A. J. et al. Coherent spin–photon coupling using a resonant exchange qubit. Nature 560, 179–184 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Petit, L. et al. Universal quantum logic in hot silicon qubits. Nature 580, 355–359 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Burkard, G., Gullans, M. J., Mi, X. & Petta, J. R. Superconductor-semiconductor hybrid-circuit quantum electrodynamics. Nat. Rev. Phys. 2, 129–140 (2020).

    Google Scholar 

  • Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714 (1995).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003).

    ADS 
    CAS 

    Google Scholar 

  • Bruzewicz, C. D., Chiaverini, J., McConnell, R. & Sage, J. M. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev. 6, 021314 (2019).

    ADS 

    Google Scholar 

  • Pino, J. M. et al. Demonstration of the trapped-ion quantum CCD computer architecture. Nature 592, 209–213 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Brennen, G. K., Caves, C. M., Jessen, P. S. & Deutsch, I. H. Quantum logic gates in optical lattices. Phys. Rev. Lett. 82, 1060 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Jaksch, D. et al. Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Wang, Y., Kumar, A., Wu, T.-Y. & Weiss, D. S. Single-qubit gates based on targeted phase shifts in a 3D neutral atom array. Science 352, 1562–1565 (2016).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Pla, J. J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pla, J. J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, S., Raha, M., Phenicie, C. M., Ourari, S. & Thompson, J. D. Parallel single-shot measurement and coherent control of solid-state spins below the diffraction limit. Science 370, 592–595 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Wolfowicz, G. et al. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 6, 906–925 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Thiele, S. et al. Electrically driven nuclear spin resonance in single-molecule magnets. Science 344, 1135–1138 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Atzori, M. & Sessoli, R. The Second Quantum Revolution: Role and Challenges of Molecular Chemistry. J. Am. Chem. Soc. 141, 11339–11352 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Coronado, E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 5, 87–104 (2020).

    ADS 

    Google Scholar 

  • Schuster, D. I. et al. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett. 94, 123602 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wallraff, A. et al. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sheludiakov, S. et al. Electrons trapped in solid neon–hydrogen mixtures below 1 K. J. Low Temp. Phys. 195, 365–377 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Jacobsen, R. T., Penoncello, S. G. & Lemmon, E. W. In Thermodynamic Properties of Cryogenic Fluids (eds Weisend II, J. G. & Jeong S.) 31–287 (Springer, 1997).

  • Pollack, G. L. The solid state of rare gases. Rev. Mod. Phys. 36, 748 (1964).

    ADS 
    CAS 

    Google Scholar 

  • Batchelder, D. N., Losee, D. L. & Simmons, R. O. Measurements of lattice constant, thermal expansion, and isothermal compressibility of neon single crystals. Phys. Rev. 162, 767 (1967).

    ADS 
    CAS 

    Google Scholar 

  • Zavyalov, V., Smolyaninov, I., Zotova, E., Borodin, A. & Bogomolov, S. Electron states above the surfaces of solid cryodielectrics for quantum-computing.’. J. Low Temp. Phys. 138, 415–420 (2005).

    ADS 
    CAS 

    Google Scholar 

  • Leiderer, P., Kono, K. & Rees, D. In Proc. 11th International Conference on Cryocrystals and Quantum Crystals (ed. Vasiliev, S.) 67–67 (University of Turku, 2016).

  • Kajita, K. A new two-dimensional electron system on the surface of solid neon. Surf. Sci. 142, 86–95 (1984).

    ADS 
    CAS 

    Google Scholar 

  • Nilsson, A., Pettersson, L. G. & Norskov, J. Chemical Bonding at Surfaces and Interfaces (Elsevier, 2011).

  • Ibach, H. Physics of Surfaces and Interfaces Vol. 2006 (Springer, 2006).

  • Pozar, D. M. Microwave Engineering (Wiley, 2011).

  • Walls, D. F. & Milburn, G. J. Quantum Optics (Springer Science & Business Media, 2007).

  • Schuster, D. I. Circuit Quantum Electrodynamics PhD thesis, Yale Univ. (2007).

  • Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).

    ADS 

    Google Scholar 

  • Ithier, G. et al. Decoherence in a superconducting quantum bit circuit. Phys. Rev. B 72, 134519 (2005).

    ADS 

    Google Scholar 

  • Chen, Z. Metrology of Quantum Control and Measurement in Superconducting Qubits PhD thesis, Univ. of California Santa Barbara (2018).

  • Leave a Comment